Jul 18, 2019 12:00 PM
Dr Summer Gibbs
Fluorescence Image-Guided Surgery for Improved Clinical Outcomes

Surgery has a prominent role in clinical medicine with over 300 million surgeries performed annually worldwide. The ultimate goal of surgery is to repair damaged or remove diseased tissues, while minimizing comorbidities by preserving vital structures such as nerves and blood vessels. Even as surgical techniques and tools have substantially advanced, with high resolution preoperative imaging and minimally invasive surgical techniques becoming routine, surgeons still rely mainly on the basic tools of white light visualization and palpation for guidance during surgery, leaving incomplete cancer resection rates high and comorbidities like nerve damage as major problems. Fluorescence-guided surgery (FGS) has the potential to revolutionize surgery by enhancing visualization of specific tissues intraoperatively. Using optical imaging of targeted fluorescent probes, FGS offers sensitive, real-time, wide-field imaging using compact imaging systems that are easily integrated into the operating room. A number of FGS systems are clinically available, however only a handful of contrast agents have been FDA approved. Our group is working to develop clinically relevant contrast agent technology to aid in intraoperative cancer margin assessment, where we are currently focused on improving breast cancer resections. Our technology will permit accurate staining of the resected tumor specimens, where the fluorescent agents will not need to touch the patient, providing a rapid path to clinical translation. We have also developed the first nerve highlighting fluorophores that are compatible with the FGS clinical infrastructure. Nerve damage is a major source of morbidity across all surgical specialties which results in chronic neuropathies that limit patient quality of life. Since nerve tissue largely cannot be repaired, avoiding its injury is of paramount importance. Substantial pre-clinical development for both cancer margin assessment and nerve preservation has been completed, where our optimized technologies are now poised for translation to improve clinical outcomes.

Sponsors